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Reversal of thermal rectification in quantum systems
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We study thermal transport in anisotropic Heisenberg spin chains using the quantum master equation. It is
found that thermal rectification changes sign when the external homogeneous magnetic field is varied. This
reversal also occurs when the magnetic field becomes inhomogeneous. Moreover, we can tune the reversal of
rectification by temperatures of the heat baths, the anisotropy, and size of the spin chains.
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Considerable progress has been made both theoretically
and experimentally on thermal transport in microscale and
nanoscale in last decade.! It has been found that similar to
electrons, the heat due to phonons can be used to carry and
process information.” In particular, several conceptual ther-
mal devices have been proposed, such as thermal rectifiers,’
thermal transistors,* thermal logical gates,> thermal
memory,’ some molecular level thermal machines,”® and
thermal ratchet.” Much work has also been done in quantum
heat transport of nanostructures'® and spin systems'!->?
where the magnetic field is another degree of freedom to
control heat flow. Indeed, it is demonstrated that thermal rec-
tification and negative-differential thermal resistance are ob-
servable in quantum spin chain by applying a nonuniform
magnetic field.?

In this Brief Report, we would like to concentrate on the
thermal rectification in a quantum spin model. Our primary
interest is to understand how far we can control the heat flow
by tuning the system parameters such as magnetic field, sys-
tem size, configurations of the system, etc. In particular, we
would like to see whether the reversal of thermal rectifica-
tion, which has been observed in classical system,?* can hap-
pen in such a quantum system.

We consider a Heisenberg spin-1/2 chain, whose Hamil-
tonian reads
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where N is the number of spins, the operators o7}, o7, and o
are the Pauli matrices for the ith spin, J,, Jys and J, are the
coupling constants between the nearest-neighbor spins, and
h; is the magnetic field strength at the ith site. We set
J=J(1+7v),Jy;=J(1-7),J,=J to consider the anisotropy in
x-y plane, where vy is the anisotropy parameter, and J=1,
without loss of generality. Figure 1 shows a schematic rep-
resentation of this model.
The total Hamiltonian including two baths is
H,,=H+Hz+H,. (2)
Here Hp is the Hamiltonian of the heat baths
Hy=34_, xH} and Hg:E_ieKij;bj, where b7 and b; are
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PACS number(s): 66.70.—f, 63.22.—m, 75.10.Pq

phonon creation and annihilation operators with the mode
wj; H; is the interaction between the spin chain and phonon
heat baths, H=3y_; R Xx® Vg, where X; =07}, Xg=0), and
Y is bath operator Yx=X,_k(c;b;+c;b)).

We use the quantum master equation method (Refs. 23
and 25-27) to study heat conduction in this model. By trac-
ing out the baths within the Born-Markovian approximation,
we obtain the equation of motion for the reduced density
matrix of the system (=1)

d .

Ep=—t[H,p]+lle+£Rp, (3)
where £;p and Lyp are the dissipative terms due to the cou-
pling with the left and right heat bath. £;p is given by
Lp=[Xp,X;]+H.c. and Lgp can be given in the similar
way. Here the operator X; can be written as

<m|XL|n> = )\Lsm,11NL(8m,n)<m|XL|n>s (4)

where &, ,=&,,—¢, and N;(e,,,)=(e®'Tt—1)7" is the Bose
distribution (kz=1) with T; being the temperature of left heat
bath. |1n) and &, are the eigenstates and eigenvalues of the
spin-chain system. The bath spectrum function we used is of
an Ohmic type. Assuming that the temperature is high
enough to make dephasing fast,”” we can solve the resulting
kinetic equations of the state probabilities numerically. The
evolution time is chosen long enough such that the final den-
sity matrix reaches a steady state p, that is, p,,=0. In the
steady state, X,&,0,,=J.+Jx=0, then we can get the
heat current as J=J;=-Jp, if T;>Ty. To quantify the
rectification efficiency, we define rectification R as:
R=(J,—J_)/max{J,,J_}, where the forward heat flux J, is
the heat current (from left to right) when the bath at higher
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FIG. 1. (Color online) A schematic representation of the model
with size N=8. The spin chain is connected to two phonon baths
with coupling \; and A;. The phonon baths are at different tem-
perature 7; and Tg. A magnetic field is applied to the spin chain.
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FIG. 2. (Color online) Rectification as a function of the mag-
netic field in a chain of size N=6. The temperature of the heat bath
are T,=Ty(1+A) and T_=Ty(1-A), where Ty=0.1 is the mean tem-
perature. The coupling between the spin chain and heat bath are
A;.=0.16 and Ap=0.04, anisotropy parameter y=0.1. The square,
circle, and triangular correspond to A=0.2, 0.4, and 0.8,
respectively.

temperature 7, is connected to the left end of the chain and
the backward flux J_ is the heat current (from right to left)
when the left end of the chain is in contact with the bath at
lower temperature 7_.

The quantum spin chain is a nonlinear system; if we in-
troduce asymmetry to the system then it may show the rec-
tification effect. We connect the spin chain to the two heat
baths by different couplings A;=0.16 and Az=0.04. As is
shown in Fig. 2, when the applied magnetic field increases,
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FIG. 3. (Color online) Analysis of the reversal of rectification in
a two-spin system. Parameters: T,=1.0, A=0.8, A;=0.16,
Ng=0.04, and y=0.1. (a) The eigenvalues E, vs magnetic field .
(b) The density p,, (probability of each eigenstate) vs h. (c) The
product of E, and the derivative of p,, from high-temperature heat
bath, which is the contribution to heat flux from each eigenstate. In
(a), (b), and (c), the square, circle, up triangle, and down triangle
correspond to eigenstates 1, 2, 3, and 4, respectively. In (b) and (c),
the solid and hollow symbols correspond to forward and backward
thermal transport, respectively. (d) The heat fluxes J, and J_ vs
magnetic field & (left scale). The square curve shows rectification
effect R vs magnetic field & (right scale).
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FIG. 4. (Color online) The rectification R vs nonuniform mag-
netic field. The chain size is N=6, h(1:N/2) is the magnetic field
applied to site 1 to N/2, and others are zero, that is, A(N/2+1:N)
=0. Here y=0, T)=0.1, and N\;=Nz=0.1. The square, circle and
triangular correspond to A=0.2, 0.4, and 0.8, respectively.

the rectification changes sign. This phenomenon is not ob-
served in electronic counterpart. From Fig. 2, we can see that
rectification R can be positive, zero, or negative, depending
on the magnetic field 4. The behavior of R remains similar
for different A, the temperature difference of the baths.

The mechanism of thermal rectification reversal can be
understood from a two-spin system which has four eigen-
states, whose contribution to heat transport can be seen
clearly in Fig. 3. Figure 3(a) shows the eigenvalues E, vs
magnetic field i, where two eigenvalues do not change with
the magnetic field. Figure 3(b) shows the steady density p,,
as a function of magnetic field. From this figure, we find that
when the magnetic field is weak, the ground state and the
excited states have some probability to be occupied (the
ground state has the largest probability). If the magnetic field
increases, the probability of the ground state becomes larger;
after a certain value, the probability of ground state is close
to one while others are zero. The heat current from the con-
tribution of each eigenstate is shown in Fig. 3(c). When the
magnetic field is weak, each state contributes to the heat flux
either positively or negatively. We find that the contribution
from ground state in the backward thermal transport is larger
than the forward case. But the contributions from other ex-
cited states have negative effect; therefore the total effect is
the forward heat flux larger than the backward flux, that is,
the rectification is positive. When the magnetic field in-
creases over a certain value, the ground state will dominate
the heat transport, and the contribution from other states de-
crease. At the time the total heat flux will have the similar
behavior with the contribution of ground state: the backward
flux is larger than the forward one; both of them increase first
and decrease to zero at last, when the system will stay in the
ground state. Therefore, the rectification changes from posi-
tive to negative, then from negative to zero at last, which can
be seen in Fig. 3(d). In short, the heat flux from the contri-
bution of ground state is larger when the more weakly
coupled reservoir is hotter, that is, the backward one is larger
than the forward one; however for the flux from excited
states, the forward one is larger than the backward one. The
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FIG. 5. (Color online) Rectification as a function of mean tem-
perature 7. The size of spin chain is N=6. The temperature of the
heat bath are 7,=Ty+AT and T_=T,—AT. Here, \;=0.16, Ag
=0.04, y=0.1, and ~h=0.01. The square, circle, and triangular cor-
respond to A7=0.01, 0.02, and 0.04, respectively.

rectification is determined by the competition of the contri-
butions to heat flux from the ground state and the excited
states.

Applying a nonuniform magnetic field to the spin chain is
another possible way to introduce asymmetry to the system
and the system can also exhibit rectification. Figure 4 dem-
onstrates this phenomenon in such a system. The rectification
is zero when the magnetic field is zero because of no asym-
metry in the system. When a weak magnetic field is applied
to the left half part of the spin chain, the rectification be-
comes positive. When magnetic field increases, the energy
difference increases for the left part, which enlarges the rec-
tification. If the field increases further then the rectification
reverses. For different temperature difference, the rectifica-
tion has similar effect but different magnitude.

From the above discussions, we find that the rectification
can change sign with the applied magnetic field. Indeed, an
increase in mean temperature can also induce reversal of
rectification. Figure 5 shows that the rectification as a func-
tion of mean temperature 7). Here we keep the temperature
difference fixed and increase the mean temperature of the
heat baths; the rectification changes sign from negative to
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FIG. 6. (Color online) The rectification changes with magnetic
field for the spin chain with different sizes. The curves of square,
circle, and up triangle, and down triangle, star, and diamond corre-
spond to N=2, 4, 6, 8, 10, and 12, respectively. Here the parameters
are: 7,=0.18, T_=0.02, A\;=0.16, N\3=0.04, and y=0.1.
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FIG. 7. (Color online) The rectification changes with anisotropy
in the spin chain. The chain size is N=6. The square, circle, and
triangular correspond to A=0.2, 0.4, and 0.8, respectively. Here the
parameters are: 7,=0.18, 7_=0.02, \;=0.16, A\3p=0.04, and #h
=0.01.

positive. When the temperature is very low, the ground state
dominates the thermal transport, the backward flux is larger
than the forward one; if we raise the temperature, more ex-
cited states will contribute to the heat flux and gradually
control the thermal transport, when the rectification changes
to positive. For different temperature difference, the rectifi-
cation changes sign at almost the same mean temperature.

Rectification can change sign with the external parameter,
such as magnetic field and the temperatures of the heat baths.
In our study, we find that thermal rectification can reverse
with the properties of the spin chain itself, such as the size
and the anisotropy of the spin chain. Figure 6 shows the
rectification changes with the magnetic field for different size
cases. The rectification effect behaves differently for differ-
ent size. In Fig. 6, there is no reversal of rectification for
small size cases N=2 and N=4; but for larger size cases N
=0, 8, 10, and 12, it shows reversal of rectification. Figure 7
shows the rectification reverses with the anisotropy of the
spin chain. In the weak anisotropy range, the rectification
coefficient is positive but it changes to negative when the
anisotropy is strong. During the changing of anisotropy, the
forward total flux is larger than the backward one at first, and
then reverses, although the heat contribution from ground
state in the backward transport is always larger than that in
the forward one.

In conclusion, we have studied thermal rectification in
quantum spin-chain systems by using quantum master equa-
tions. It has been shown that rectification can change sign
when the magnetic field, temperature, the anisotropy, and the
system size change. Although the reversal of rectification is
complicated parameter-dependent, it is believed to be a uni-
versal phenomenon for the thermal transport in one-
dimensional systems.
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